3.3.5 \(\int \frac {\tanh ^3(x)}{(a+b \text {sech}^2(x))^{3/2}} \, dx\) [205]

Optimal. Leaf size=49 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {a+b}{a b \sqrt {a+b \text {sech}^2(x)}} \]

[Out]

arctanh((a+b*sech(x)^2)^(1/2)/a^(1/2))/a^(3/2)+(-a-b)/a/b/(a+b*sech(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {4224, 457, 79, 65, 214} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {a+b}{a b \sqrt {a+b \text {sech}^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^3/(a + b*Sech[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]]/a^(3/2) - (a + b)/(a*b*Sqrt[a + b*Sech[x]^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4224

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x)
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rubi steps

\begin {align*} \int \frac {\tanh ^3(x)}{\left (a+b \text {sech}^2(x)\right )^{3/2}} \, dx &=\text {Subst}\left (\int \frac {-1+x^2}{x \left (a+b x^2\right )^{3/2}} \, dx,x,\text {sech}(x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {-1+x}{x (a+b x)^{3/2}} \, dx,x,\text {sech}^2(x)\right )\\ &=-\frac {a+b}{a b \sqrt {a+b \text {sech}^2(x)}}-\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\text {sech}^2(x)\right )}{2 a}\\ &=-\frac {a+b}{a b \sqrt {a+b \text {sech}^2(x)}}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {sech}^2(x)}\right )}{a b}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {a+b}{a b \sqrt {a+b \text {sech}^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(103\) vs. \(2(49)=98\).
time = 0.15, size = 103, normalized size = 2.10 \begin {gather*} \frac {\left (-\frac {2 \sqrt {a} (a+b) \cosh (x) (a+2 b+a \cosh (2 x))}{b}+\sqrt {2} (a+2 b+a \cosh (2 x))^{3/2} \log \left (\sqrt {2} \sqrt {a} \cosh (x)+\sqrt {a+2 b+a \cosh (2 x)}\right )\right ) \text {sech}^3(x)}{4 a^{3/2} \left (a+b \text {sech}^2(x)\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^3/(a + b*Sech[x]^2)^(3/2),x]

[Out]

(((-2*Sqrt[a]*(a + b)*Cosh[x]*(a + 2*b + a*Cosh[2*x]))/b + Sqrt[2]*(a + 2*b + a*Cosh[2*x])^(3/2)*Log[Sqrt[2]*S
qrt[a]*Cosh[x] + Sqrt[a + 2*b + a*Cosh[2*x]]])*Sech[x]^3)/(4*a^(3/2)*(a + b*Sech[x]^2)^(3/2))

________________________________________________________________________________________

Maple [F]
time = 1.30, size = 0, normalized size = 0.00 \[\int \frac {\tanh ^{3}\left (x \right )}{\left (a +b \mathrm {sech}\left (x \right )^{2}\right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3/(a+b*sech(x)^2)^(3/2),x)

[Out]

int(tanh(x)^3/(a+b*sech(x)^2)^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*sech(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^3/(b*sech(x)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 729 vs. \(2 (41) = 82\).
time = 0.44, size = 2194, normalized size = 44.78 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*sech(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a*b*cosh(x)^4 + 4*a*b*cosh(x)*sinh(x)^3 + a*b*sinh(x)^4 + 2*(a*b + 2*b^2)*cosh(x)^2 + 2*(3*a*b*cosh(x)^
2 + a*b + 2*b^2)*sinh(x)^2 + a*b + 4*(a*b*cosh(x)^3 + (a*b + 2*b^2)*cosh(x))*sinh(x))*sqrt(a)*log(((a^3 + 2*a^
2*b + a*b^2)*cosh(x)^8 + 8*(a^3 + 2*a^2*b + a*b^2)*cosh(x)*sinh(x)^7 + (a^3 + 2*a^2*b + a*b^2)*sinh(x)^8 + 2*(
2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^6 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3 + 14*(a^3 + 2*a^2*b + a*b^2)*c
osh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^3 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x))*s
inh(x)^5 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^4 + (70*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^4 + 6*a^3 + 14*a^2*b +
 9*a*b^2 + 30*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^5
 + 10*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^3 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x))*sinh(x)^3 + a^3 + 2*
(2*a^3 + 3*a^2*b)*cosh(x)^2 + 2*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^6 + 15*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*c
osh(x)^4 + 2*a^3 + 3*a^2*b + 3*(6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*((a^2 + 2*a*b + b^2
)*cosh(x)^6 + 6*(a^2 + 2*a*b + b^2)*cosh(x)*sinh(x)^5 + (a^2 + 2*a*b + b^2)*sinh(x)^6 + 3*(a^2 + 2*a*b + b^2)*
cosh(x)^4 + 3*(5*(a^2 + 2*a*b + b^2)*cosh(x)^2 + a^2 + 2*a*b + b^2)*sinh(x)^4 + 4*(5*(a^2 + 2*a*b + b^2)*cosh(
x)^3 + 3*(a^2 + 2*a*b + b^2)*cosh(x))*sinh(x)^3 + (3*a^2 + 4*a*b)*cosh(x)^2 + (15*(a^2 + 2*a*b + b^2)*cosh(x)^
4 + 18*(a^2 + 2*a*b + b^2)*cosh(x)^2 + 3*a^2 + 4*a*b)*sinh(x)^2 + a^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(x)^5 + 6
*(a^2 + 2*a*b + b^2)*cosh(x)^3 + (3*a^2 + 4*a*b)*cosh(x))*sinh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a
 + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^7 + 3*(2*a^3 + 5*a
^2*b + 4*a*b^2 + b^3)*cosh(x)^5 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^3 + (2*a^3 + 3*a^2*b)*cosh(x))*sinh(x))
/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 +
 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + (a*b*cosh(x)^4 + 4*a*b*cosh(x)*sinh(x)^3 + a*b*sinh(x)^4 + 2*(a*b + 2*b^2
)*cosh(x)^2 + 2*(3*a*b*cosh(x)^2 + a*b + 2*b^2)*sinh(x)^2 + a*b + 4*(a*b*cosh(x)^3 + (a*b + 2*b^2)*cosh(x))*si
nh(x))*sqrt(a)*log(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*a*cosh(x)^2 + b)
*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 +
 a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(a*cosh(x)^3 + b*cosh(x))*sinh(x) + a)/(cosh(x)^2 +
 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a*b)*cosh(x)*sinh(x) + (a^2 + a
*b)*sinh(x)^2 + a^2 + a*b)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)
^2)))/(a^3*b*cosh(x)^4 + 4*a^3*b*cosh(x)*sinh(x)^3 + a^3*b*sinh(x)^4 + a^3*b + 2*(a^3*b + 2*a^2*b^2)*cosh(x)^2
 + 2*(3*a^3*b*cosh(x)^2 + a^3*b + 2*a^2*b^2)*sinh(x)^2 + 4*(a^3*b*cosh(x)^3 + (a^3*b + 2*a^2*b^2)*cosh(x))*sin
h(x)), -1/2*((a*b*cosh(x)^4 + 4*a*b*cosh(x)*sinh(x)^3 + a*b*sinh(x)^4 + 2*(a*b + 2*b^2)*cosh(x)^2 + 2*(3*a*b*c
osh(x)^2 + a*b + 2*b^2)*sinh(x)^2 + a*b + 4*(a*b*cosh(x)^3 + (a*b + 2*b^2)*cosh(x))*sinh(x))*sqrt(-a)*arctan(s
qrt(2)*((a + b)*cosh(x)^2 + 2*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 + a)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*
sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(
x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + (2*a^2 + 3*a*b)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + 3*a*b)*s
inh(x)^2 + a^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + 3*a*b)*cosh(x))*sinh(x))) + (a*b*cosh(x)^4 + 4*a*b*cosh
(x)*sinh(x)^3 + a*b*sinh(x)^4 + 2*(a*b + 2*b^2)*cosh(x)^2 + 2*(3*a*b*cosh(x)^2 + a*b + 2*b^2)*sinh(x)^2 + a*b
+ 4*(a*b*cosh(x)^3 + (a*b + 2*b^2)*cosh(x))*sinh(x))*sqrt(-a)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) +
sinh(x)^2 - 1)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)
)/(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sin
h(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)) + 2*sqrt(2)*((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a*b)*
cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 + a^2 + a*b)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2
*cosh(x)*sinh(x) + sinh(x)^2)))/(a^3*b*cosh(x)^4 + 4*a^3*b*cosh(x)*sinh(x)^3 + a^3*b*sinh(x)^4 + a^3*b + 2*(a^
3*b + 2*a^2*b^2)*cosh(x)^2 + 2*(3*a^3*b*cosh(x)^2 + a^3*b + 2*a^2*b^2)*sinh(x)^2 + 4*(a^3*b*cosh(x)^3 + (a^3*b
 + 2*a^2*b^2)*cosh(x))*sinh(x))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tanh ^{3}{\left (x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**3/(a+b*sech(x)**2)**(3/2),x)

[Out]

Integral(tanh(x)**3/(a + b*sech(x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*sech(x)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`
, a substit

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {{\mathrm {tanh}\left (x\right )}^3}{{\left (a+\frac {b}{{\mathrm {cosh}\left (x\right )}^2}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3/(a + b/cosh(x)^2)^(3/2),x)

[Out]

int(tanh(x)^3/(a + b/cosh(x)^2)^(3/2), x)

________________________________________________________________________________________